Anatomy in the resting state? Taking a look at receptor patterns

Karl Zilles

Institute of Neuroscience and Medicine INM-1 Research Centre Jülich and University Hospital of Psychiatry, Psychotherapy and

Psychosomatics, RWTH Universität Aachen

Regionally and functionally specific endowment of the brain with neurotransmitter receptors

1. How to visualize receptors at high spatial resolution throughout the entire brain

Zilles, K., Schleicher, A., Palomero-Gallagher, N., Amunts, K.: Quantitative analysis of cyto- and receptorarchitecture of the human brain, pp. 573-602. In: Brain Mapping: The Methods, 2nd edition (A.W. Toga and J.C. Mazziotta, eds.). Academic Press (2002)

Quantitative in vitro Receptor Autoradiography: Method (1)

Serial sections (20 μ m) mounted onto glass slides

- Preincubation: re-hydrate sections. Remove endogenous substances
- <u>Main incubation</u>: buffer solution with [³H]-ligands which specifically bind to a given receptor type
- <u>Washing step</u>: terminate binding procedure and eliminate surplus [³H]ligand and buffer salts
- <u>Exposition</u> of labeled sections and scales of known radioactivity concentrations to tritiumsensitive film
- <u>Digitization</u> of the films, measurement of receptor densities in fmol/mg protein, and color coding
- <u>Histological staining</u> of alternating sections for cell bodies and myelinated fibers

Examined receptor binding sites

Neurotransmitter	Receptor	[³ H] Ligand
Glutamate	AMPA	AMPA
	Kainate	kainate
	NMDA	MK-801
GABA	GABA _A	muscimol,
	GABA _B	CGP 54626
	GABA _A BZ	Flumazenil
Acetylcholine	M ₁	pirenzepine
	M_2	oxotremorine-M, AF-DX 384
	M ₃	4-DAMP
	nicotinic $\alpha_4\beta_2$	epibatidine
Noradrenaline	α ₁	prazosin
	α2	UK 14,304 RX-821002
Serotonin	5-HT _{1A}	8-OH-DPAT
	5-HT ₂	ketanserin
Dopamine	D ₁	SCH 23390

Image processing

Radioactivity concentration (cpm)

Linearised and color-coded autoradiograph grey values or colors

encode receptor densities Regionally and functionally specific endowment of the brain with neurotransmitter receptors

2. Regional and laminar distribution of *single receptor types* in the cerebral cortex

The amygdala must be further subdivided based on it's distinct and heterogenous receptor distribution

basomedial bm **basolateral** b lateral Structural MRI at 4 Tesla: spatial resolution 350 µm isotrop **NMDA** receptor

Receptor autoradiography

The termination fields of *the trisynaptic pathway in the hippocampus* show distinct regional and laminar expression patterns of different glutamatergic receptors

- *Perforant path* to CA and molecular layer of DG
- *Mossy fibers* from DG to CA3
- Schaffer collaterals from CA3 to CA1

Glutamatergic terminals of the *perforant path* and the *Schaffer collaterals*

Glutamatergic terminals of the *perforant path* and the *Schaffer collaterals*

Glutamatergic terminals of the *mossy fibers*

Cholinergic muscarinic M₂ receptor and primary sensory areas: Matching receptor- and myeloarchitecture

Receptor autoradiography

Myelin staining

Cholinergic muscarinic M₂ receptor and primary sensory areas: Receptorarchitecture

Multiple receptors and anterior cingulate cortex

Palomero-Gallagher, Mohlberg, Zilles, Vogt (2008) *J Comp Neurol* 508: 906-926. Palomero-Gallagher & Zilles (2009) In: Cingulate Neurobiology & Disease. Oxford University Press, pp. 31-63.

Regionally specific endowment of the brain with neurotransmitter receptors

3. Regional and laminar distribution of multiple receptor types in the cerebral cortex

- RECEPTOR FINGERPRINTS -

On the way to understand specificity and mechanisms behind receptor fingerprints: Conditional 5-HT_{1A} receptor knockout

Fingerprints: functional specificity

primary (V1), and higher (V2, V3) visual areas

Ventral visual areas in human extrastriate cortex (FG2, FG2)

Weiner, K., Golarai, G., Caspers, J., Mohlberg, H., Zilles, K., Amunts, K., Grill-Spector, K.: The mid-fusiform sulcus: A landmark identifying both cytoarchitectonic and functional divisions of the human fusiform gyrus. *Neuroimage* 84: 453-465 (2014)

Gomez, J., Barnett, M.A., Natu, V.S., Mezer, A., Palomero-Gallagher, N., Weiner, K.S., Amunts, K., Zilles, K., Grill-Spector, K. (2016). Growth of tissue in human cortex is coupled with the development of face processing. *Science* 355: 68-71 (2017)

Receptor fingerprint of FG1

Receptor fingerprint of FG2

Hierarchical Cluster Analysis

Caspers, J., Palomero-Gallagher, N., Caspers, S., Schleicher, A., Amunts, K., Zilles, K.: Receptor architecture of cytoarchitectonic visual areas FG1 and FG2 of the posterior fusiform gyrus. Brain Struct. Funct. 220: 205-220 (2015)

Zilles K, & Palomero-Gallagher N: Transmitter receptor fingerprints in regions and layers of the human cerebral cortex. Frontiers Neuroanat (submitted)

Zilles K, & Palomero-Gallagher N: Transmitter receptor fingerprints in regions and layers of the human cerebral cortex. Frontiers Neuroanat (submitted)

Zilles K, & Palomero-Gallagher N: Transmitter receptor fingerprints in regions and layers of the human cerebral cortex. Frontiers Neuroanat (submitted)

Receptors and the Default Mode Network

DMN areas defined by Buckner et al. (2008) Ann NY Acad Sci 1124: 1-38

Cytoarchitectonic areas defined by Brodmann (1909) and JuBrain

Principal component analysis of receptor densities

(averaged over all cortical layers) and default mode network DMN

- posterior cingulate cortex (BA23)
- precuneus (BA31)
- anterior cingulate cortex (p24, s24)
- ventral medial prefrontal cortex (10m, BA32, BA11)
- dorsal medial prefrontal cortex (medial part of BA9)
- inferior parietal lobule (PGa, PGp, PFm, PFt)
- lateral temporal cortex (BA20, BA21)
- anterior temporal pole (BA38)
- hippocampus, entorhinal (EC), and parahippocampal (BA36) cortex

Discriminance analysis of the densities (averaged over all cortical layers) of all receptor types between default mode network DMN areas and Non-DMN areas

Contribution of each receptor type to the segregation between DMN and Non-DMN areas

Receptor	Standardized score
M ₂	-1.6384
Kainate	-1.2543
α_2	1.2023
AMPA	1.1607
5-HT ₂	1.1296
NMDA	-0.9699
M ₃	0.7538
GABA _B	0.6951
D_1	-0.3707
$\alpha_4\beta_2$	0.3540
5-HT _{1A}	-0.2558
α_1	-0.2137
GABA _A /BZ	-0.0288
GABA _A	0.0235
M_1	-0.0221

• • non-DMN areas

Thanks to:

Institute of Neuroscience and Medicine (INM-1), Research Center Jülich:

- Katrin Amunts
- Mareike Bacha-Trams
- Sebastian Bludau
- Julian Caspers
- Svenja Caspers
- Nicola Palomero-Gallagher
- Filip Scheperjans
- Axel Schleicher

Stanford University:

- Kalanit Grill-Spector
- Kevin Weiner

Institute of Developmental Genetics, German Research Center for Environmental Health München:

Wolfgang Wurst

Max Planck Institute Leipzig:

• Angela Friederici

Brain Mapping Center, UCLA:

- John C. Mazziotta
- Arthur Toga

A receptor fingerprint is...

Receptor Fingerprints of the primary visual cortex: layer specificity

Multidimensional scaling analysis of receptor densities (averaged over all cortical layers) and default mode network DMN

- posterior cingulate cortex (BA23)
- precuneus (BA31)
- anterior cingulate cortex (p24, s24)
- ventral medial prefrontal cortex (10m, BA32, BA11)
- dorsal medial prefrontal cortex (medial part of BA9)
- inferior parietal lobule (PGa, PGp, PFm, PFt)
- lateral temporal cortex (BA20, BA21)
- anterior temporal pole (BA38)
- hippocampus, entorhinal (EC), and parahippocampal (BA36) cortex

Summary

High densities of receptors significantly correlate, or show a non-significant trend, with **low** cerebral metabolic rates of glucose or oxygen consumption in **DMN** areas. A notable exception is the positive correlation of the densities of inhibitory GABA_A receptors with the cerebral metabolic rate of oxygen consumption.

High densities of receptors significantly correlate, or show a non-significant trend, with **high** cerebral metabolic rates of glucose or oxygen consumption in **non-DMN** areas (mainly primary and higher sensory areas, motor areas).